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The equations of motion for a high Prandtl number Boussinesq fluid in a square 
2-D cavity with side-wall heating and cooling and perfectly conducting end walls have 
been solved by means of Galerkin as well as AD1 (alternating-direction-implicit) finite 
difference methods for Rayleigh numbers up to 8 x IO6 and two angles of tilt. The 
finite difference solutions for the conductive flux at the heated wall converge mono- 
tonically from above with increasing numbers of mesh points; whereas, the Galerkin 
solutions converge from below and undergo modest oscillations with long period as 
additional terms are included. The nearly quiescent core and associated hydrodynamic 
boundary layers are, for given numbers of mesh points/terms, better represented by the 
finite difference method. With increasing precision in the wall heat flux and/or shear, 
the computational costs for both methods become comparable; however, for errors in 
excess of 2-3 ‘A, the Galerkin method is more economical. 

INTRODUCTION 

It long has been recognized that numerical integration of the conservation 
equations for mass, momentum, energy, and species in two- and three-space 
dimensions becomes increasingly more difficult as the Re/Ra numbers for forced/ 
natural convective flows increase. The principal difficulty derives from the effects 
of increased nonlinearity and coupling via the advective terms which, for various 
finite difference schemes, lead to computational instability. Such instability may 
arise, for example, when a given scheme fails to conserve mean vorticity and 
either mean kinetic energy or square vorticity [l]. 

Historically, early approaches approximated the governing flow equations 
(in terms of either the primitive variables v, P or stream function-vorticity) by 
means of central difference analogs, the resulting algebraic equations being solved 
iteratively by successive substitution techniques [2-51. Such methods worked well 
at low Reynolds numbers but failed to converge at higher Reynolds numbers. 
Although the stability problem may to some extent be alleviated by use of under- 
relaxation [6], the cost proves to be prohibitive. 
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In the search for economical methods which are stable at all Re/Ra numbers, 
several investigators, following an observation by Courant et al. [7], abandoned 
central differencing of the advective terms in favor of so-called “upwind- 
differencing” [8, 9, IO]. Although the method has proved to be unconditionally 
stable, appreciable loss of accuracy accrues as Re/Ra become large due to false- 
diffusion effects associated with first order truncation errors in differencing the 
advective terms [I I]. Further discussion and an error analysis of the upwind 
scheme is given in [ 121. 

In an effort to retain precision at higher Re/Ra numbers, an alternative school 
of thought has emerged in which conditionally-stable, fully centrally differenced 
analogs have been devised for which coupled sets of nonlinear algebraic equations 
are solved by means of alternating-direction-implicit (ADI) techniques. The 
method has been successfully applied to shear- and buoyancy-driven cavity flows 
at Re < 2000 and Ra < 360,000, respectively [13], to entrance region flows 
(Re < 75,000) [14], to flows in a cylindrical enclosure induced by high rates of 
surface evaporation-condensation in the presence of noncondensable [ 151, and 
to thermally driven flow of nonnewtonian fluid [16]. In [13], some difficulty in 
obtaining solutions at Re > 2000 was cited; however, in recent unpublished work 
by the first author, solutions were obtained up to Re N 0(104) and it was found 
that the AD1 method is markedly superior to upwind differencing, in terms of 
both accuracy and efficiency, as the Reynolds number becomes large. Similar 
conclusions were reached in [13]. More recently, a hybrid algorithm has been 
proposed [ 171 involving combination of the upwind and central-difference schemes. 
Application of the algorithm to energy transfer across a simple one-dimensional 
Couette-type flow proves to be superior to either scheme. 

In contrast to integrating the conservation equations by means of finite difference 
methods, a markedly different approach is emerging in which dependent variables 
are expanded in sequences of spatially dependent functionals (with the necessary 
property that they form a complete set), the coefficients in the resulting series 
being extracted from simple integrations over the domain of interest. This approach, 
often referred to as the Galerkin method, offers considerable flexibility since it 
does not require that the set of “trial” functions be orthogonal and appreciable 
freedom exists with respect to ordering the sequence (see e.g. [18, 191). Thus, 
functions may be selected which satisfy not only the boundary conditions but also, 
depending on the insight and skill of the analyst, other features of a given problem 
as well. Furthermore, unlike finite difference methods, evaluation of wall fluxes 
is exact within the accuracy of the internal field results. However, little is known 
about the method’s convergence properties and storage requirements for all 
but the largest of digital computers may pose a problem if appreciable numbers 
of terms are required to effect a desired accuracy. 

An early application of the Galerkin-type approach involved the use of 
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orthogonal polynomials as trial functions in a two-dimensional analysis of thermal 
convection in enclosed plane gas layers [ZO], with 500 < Ra < 104. Results 
were obtained for a vertical square cavity using modest numbers of terms in the 
series expansion, convergence being presumed when additional terms produced 
negligible changes in the results. Later applications include an analysis of 
2-D BCnard convection [21], for which the trial functions were eigenfunctions 
of the stability problem, and a study of 2-D motions in a horizontal layer of a 
high Pandtl number fluid heated from below [22], using from 12 to 42 terms in a 
Fourier expansion for temperature with Ra, < Ra < 30,000. 

The purpose of the present contribution is to compare Galerkin and finite 
difference methods of analysis for highly nonlinear, thermally driven flows. (As 
implied above, it appears that the conditionally stable AD1 approach is the most 
promising finite difference method available, and it has been chosen for the present 
study.) The physical situation is depicted in Fig. 1, where the model problem is 

T=f 

“Y T=I-x 

li::: 
T=l-x 

T=O 

2, 

x 

FIG. 1. Schematic of physical situation. 

one of steady 2-D motion of a large Prandtl number fluid in a square cavity with 
perfectly conducting end walls at z = 0, 1. Steady 2-D motion at Ra - IO’ for a 
nearly square cavity has been experimentally observed by Elder [23]. Further, 
Busse [24] has recently argued that the onset of nonstationary convection occurs 
at Rayleigh numbers which increase approximately linearly with Prandtl number. 
The assumption of steady motion at large Rayfeigh number for a high Prandtl 
number fluid appears, therefore, to be justified. Perfectly conducting, as opposed 
to adiabatic, end walls are considered because the associated thermal boundary 
layers for the former provide a more severe test of the methods. Due to the centro- 
symmetric character of the problem about x = l/2, only the half-plane 0 < x < l/2 
need be considered. 

581/16/3-6 
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ANALYSIS 

For steady, two-dimensional, thermally driven flow of a Boussinesq fluid 
within an enclosure, dimensionless forms of the governing conservation equations, 
with Pr --+ co, may be written as 

aT . aT V4+cosyX--smy~=0, 

a* aT a# aT ------= 
az ax ax az Ra-lV2T, (2) 

where u = LJ$/az, w = -a#/ax, and Rayleigh number is defined as Ra = 
olg AT d3/vfc; and the nondimensionalization has been effected with respect to 
length scale d, velocity scale Ra K/d, and temperature scale AT. Thermal boundary 
conditions are given in Fig. 1; for the flow, # = +/an = 0 at the solid walls. 

Galerkin Method 

A detailed exposition of the method is given in [ 18, 19,251 wherein, on expanding 
T and # in terms of trial functions T, and z,!J, 

T(x, 2) = (1 - x> + $ A,T,(x, z), (3) 
m-1 

9% 4 = ,;, &t&L(x, 4, (4) 

substituting the resulting expansions in Eqs. (1) and (2), and integrating the result 
over the unit square, there obtains 

= Ra-l 5 A,(T,V2Tm). (6) 
In=1 

Here, (4) denotes the double integration Ji J: C$ dx dz, A, and B,,, are undetermined 
Galerkin coefficients, and the integrations are performed with respect to weighting 
functions & and T, , respectively. With n = 1, 2 ,..., N, Eqs. (5) and (6) reduce 
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to an algebraic problem in the 2N unknown coefficients A, and B, . Denoting 
the integrals as matrices (or vectors), as required, and using the summation 
convention 

From Eq. (7), 

(7) 

(8) 

B, = (Z(Y) - A n 1’2’) $-f m wan (9) 

Substituting Eq. (9) into (S), the algebraic problem for the coefficients A, assumes 
the form 

A,AjMiik + AiDi = Ej . (10) 

Trial functions T, and #m have been devised [25,26] which satisfy the boundary 
conditions and, additionally, take advantage of the centrosymmetric character 
of the problem. For m < N/2 

while, for m > 

where 

and 

T, = sin[(2Jm - 1) rrx] sin(2K,rrz), 

#m = sJ& - l/2) && - l/2), 
(12) 

T, = sin(2J,rx) sin[(2K, - 1 j rz], 

&I = cJ,& - l/2) cK,,,(z - 1/2), 
(11) 

N/2, 

co WW 4b?9 
cn(+) = cosh(X,/2) - cos(XJ2) 

s (#) = sW~~c4 _ sinth$) 
A sinh(&2) sW42) ’ 

(13) 

(14) 

The X, and p,, are roots of the characteristic equations tanh(X/2) + tan(h/2) = 0 
and coth(p/2) - cot(p/2) = 0, respectively. In selecting combinations of integers 
(Jm, K,) to form the sequences T, and & , two choices are available, either 

Jm < M and Km G M 
or 

Jw, + Km d M. 
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The former will be denoted “full-mode” selection (FM) whereas the latter will be 
termed “diagonal-mode” selection (DM). Both choices were considered and, 
as might be expected due to inclusion of some higher modes, the latter selection 
gave better convergence properties. 

Solution of the algebraic equations (10) for the Galerkin coefficients was obtained 
by the Newton-Raphson method. This required a reasonably close estimate of the 
true solution to ensure convergence. At low Ra, the estimate was extracted from 
the linearized form of Eq. (IO), upon setting Mijk = 0, and solving by matrix 
inversion techniques. For larger Ra, the linearized solution is a poor approximation 
to the full equations and the solution at a previous Ra number served as a first 
guess in the iterative procedure. Starting at Ra = 10,000-300,00, with the 
linearized solution as a first estimate, succeeding solutions were obtained by 
increasing Ra by factors no greater than 2 or 3. Using this procedure together 
with a relaxation parameter of 0.5 on the first few iterations, a solution at each 
succeeding Ra number was obtained in 10-15 iterates. 

Finite Difference Procedures 

Reducing Eq. (1) to a pair of second-order equations in stream function- 
vorticity, rewriting Eq. (2) in full divergence form, and approximating first and 
second derivatives by second-order-correct central-difference analogs, one cycle 
of the AD1 scheme for the resulting algebraic problem assumes the form 

D,,@:;i2’ = A,,&$$ + B,,i,j&~;,;’ f C;“?(,? 

[(i = 2, 3 ,..., Z),j = 2, 3 ,..., J - 11, (15) 

D,+‘“tl? 1L.z 3 = A R.2.3 .,# !I!$ . . + B 11,%.3 .,$(‘t?, n,2,3 1 -k C(k+2’ ll.z 3 

[(j = 2, 3,..., J - l), i = 2, 3,.. ., I], (16) 

where Z - 1 = 0.5/dx, .Z - 1 = l/dz, and dx = dz = d; and, for example, 
the x-direction half cycle is defined as follows. 

1+2+o* 0 0 AZ%, 
2w2+0, 0 0 A2(cos y(a7-/ax) + sin y(aT/a2))i,, 
3 T 2 + UT -(Ra/4X~~+l - +j-di+l (Ra/Wj+~ - #~-I>s-I -Ra Az(a/az)(T(alGiax)),., 

In addition to the AD1 iteration parameters CT, = A2/A7,, field- and boundary- 
weighting parameters are introduced such that 
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following each AD1 cycle and 

(1+1) = 
as ~w,sWs (O + (1 - a,J w(sl+l), (lf9 

following each recalculation of the wall vorticity. Following [14], w, was extracted 
from the second-order correct expression 

us = -(Y4+1 + 4&+, - #S+3)/(24)2 (19) 

where s, s + l,..., denote locations at the wall, one point in from the wall, etc. 
The overall scheme for converging the coupled algebraic problem is demon- 

strated in Fig. 2. Starting with the fluid at rest, solutions were obtained sequentially 

START 

FIG. 2. Flow chart for finite difference solution. 
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at successive Rayleigh numbers using the converged solution at a previous Rayleigh 
number as “initial” condition for the next. The number of passes J&, L, , and M 
in the fluid mechanics loops per pass through the energy equation, as well as 
the U’S, were treated as parameters for optimizing the iterative scheme. 

RESULTS AND DISCUSSION 

Convergence Properties 

Comparisons of convergence characteristics for the Galerkin and AD1 finite 
difference methods for integrating the equations governing thermally driven flow 
of a high Prandtl number Boussinesq fluid in a square 2-D cavity are presented 
in Figs. 3-9. The number of terms in the Galerkin expansion as well as strips 
across the cavity are denoted by N; for the Galerkin results, full- and diagonal- 
mode bases of selection are denoted by FM and DM, respectively. Although 
results were obtained at Ra x 10e6 = 0.003, 0.01, 0.03, 0.1, 0.3,0.8, 1.2,2.0,4.0, 
and 8.0, only results at high Ra will be discussed here. 

The effects of N on wall heat transfer are illustrated in Figs. 3 and 4, where 

Nu = - Jb’ g dz IrsO 

At y = 0”, the finite difference results for N = 100 are essentially exact, giving 
iVu A 0.112 Ra0.294, with the Nusselt number at Ra = 8 x IO6 being N 2 % high as 
estimated by means of d2-extrapolation. At y = 60”, the results at Ra = 1.2 x lo6 
are essentially converged using N = 60 strips or 72 DM terms. The effects of N 
on NU are more clearly displayed in Fig. 4, where it is seen that the finite difference 
solutions converge monotonically from above whereas the Gale&in solutions 
converge from below and appear to oscillate as N becomes large. Thus, the common 
practice whereby Galerkin analyses are presumed to have converged when added 
terms produce negligible change in a given property of a solution may be 
misleading. Furthermore, it would seem that the DM basis of selection is superior 
to FM (compare dashed curves in Fig. 4); however, the DM basis leads to earlier 
and more pronounced overshoot in Nu, and the merit of DM-selection is obscured. 
Of further interest is the result that for a given accuracy in Nu, with the constraint 
that the thermal and flow fields be self-consistent, aN/aRa is appreciably larger 
for the Galerkin as opposed to the finite difference precedure. For example, it is 
estimated that convergence of NU to within 2 % at 8 x lo6 would require on the 
order of 200 DM terms. 

The effects of N on the flow field are illustrated in Figs. 5-7 in terms of the 
velocity profiles at mid-height (w = --a#/&) and midplane (U = a#/?!~). The 
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3X10” IO’ 3X10’ IO’ 3X10’ 8X10” 
RAYLEIGH NUMBER 

FIG. 3. Convergence characteristics of Nusselt number at heated wall with increasing 
Rayleigh number. 
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_*-- 
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=-L -=-- 
Ro=1.2xf0:y=609 

FIG. 4. Convergence characteristics of Nusselt number at heated wall with increasing number 
(N) of strips/terms. 
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finite difference results, as suggested by Fig. 4, overpredict the extremum in w and U, 
but tend to well represent boundary layer locations and the nearly stagnant core 
of the flow (see Elder’s results [23] for adiabatic end walls). The Galerkin results, 
on the other hand, tend to misrepresent the general character of the boundary 
layer flows, perhaps as a consequence of the inability of the truncated series to 
handle well the nearly quiescent core region (see Figs. 5 and 7). Again, the diagonal 
mode of selection appears to be superior. The results obtained using either method 
are still insufficiently precise to resolve even qualitatively the fine detail of the core 
flow (see e.g. Fig. 7). 

The effects of N on the thermal field are illustrated in Figs. 8 and 9. At midheight, 
the thermal boundary layers along the hot wall are less sharply defined than are 
the hydrodynamic boundary layers (compare Fig. 8 with Figs. 5 and 6). This 
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FIG. 5. Velocity profile at midheight, y = 0”. 
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FIG. 6. Velocity profile at midheight, y = 60”. 
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FIG. 7. Velocity profile at midplane, y = 0”. 
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FIG. 8. Temperature profile at midheight, y = 0”, 60”. 

observation, coupled with the first-order effect of energy advection in the core, 
accounts for the relatively greater success of the Galerkin method in predicting 
wall heat transfer as opposed to wall shear. 

Computational Eficiency 

The preferred basis for assessing the relative efficiencies of the methods would 
entail direct quantitative comparisons of the computational times required to 
obtain solution, of a priori prescribed accuracies, for the sequence 

Ra = 3 x lo3 -+ 8 x 106. 

Since the computational costs for such an approach would have been prohibitively 
high, only qualitative inferences, based on the data in Fig. 4 for the y = 0 case, 
will be made. 

For a 2 % “error” in Nu at Ra = 8 x 106, relative to the “true” solution as 
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obtained by d2-extrapolation of the finite difference solutions at N = 80 and 100, 
it is found that the computational times for the Ra sequence are comparable. 
At reduced accuracies, the Galerkin procedure proves to be increasingly more 
efficient, requiring about l/2 to l/3 as much time for errors of the order of 10 %. 
However, as discussed earlier, the Galerkin solutions tend to misrepresent more 
seriously the hydrodynamics despite comparable accuracies in wall heat transfer. 

0 .I .2 .3 .4 .5 

LONGITUDINAL COORDINATE, z 

FIG. 9. Temperature gradient profile at midplane, y = 0”. 

Of note with respect to the AD1 finite difference method is the increased difficulty 
encountered in obtaining steady solutions at high Ra. It was found that increasingly 
larger AD1 parameters (urn’s) were required to eliminate spurious oscillatory 
transients with long period as Ra + 8 x 106. Over the range Ra = 3 x lo3 -+ 
8 x 106, a,(= a,) and uT ranged approximately from 0.1 to 10 and from 1 to 100, 
respectively. (The field weighting parameters u6n,F as well as the wall vorticity 
factor u~,~ were fixed at - 0.2 and 0.85, respectively.) Furthermore, it proved 
useful to promote intermediate “solutions” for the flow field which were in-phase 
with the thermal field. This was done by increasing the number of passes & , L, , 
and M through the fluid mechanics loops per pass through the energy equation 
as Ra became large. At Ra = 8 x 106, & = L, e 5 - 10 with M + 15. 
An attempt was made to develop near optimal sequences of the u4’s and the looping 
parameters but, again, the cost proved to be prohibitive. In addition, the parameters 
proved to be N-dependent. 

Although the Galerkin method appears to offer an attractive alternative to 
finite difference methods, it should be noted that its apparent advantage with 
respect to computational efficiency is to some extent negated by a more tedious 
preparation of the problem and somewhat larger storage requirements. These 
disadvantages, of course, become more severe with increasing complexity of a 
given problem. 
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CONCLUSIONS 

1. Conditionally stable AD1 methods of solution for elliptic partial differential 
equations may successfully be applied to highly nonlinear, thermally driven flows. 
However, as the Rayleigh number becomes large, 

(a) increasingly larger values of the AD1 parameters (i.e., smaller values 
of the “effective” time step dt = AZ/a) as well as increased compatibility 
between the flow and thermal fields at each “time step” are required 
to remove long period spurious oscillations in the dependent variables 
as the iterative scheme converges; and 

(b) near optimal values of the relaxational parameters can in principal 
be obtained but their complex dependence on various idiosyncrasies 
of the nonlinear problem considered here does not admit generalization 
to other problems. 

2. The Galerkin method (a particularly appropriate subset of the more general 
class of variational methods contained in the Method of Weighted Residuals; 
see e.g. [I 8, 191) of solution is an attractive alternative to finite difference methods. 
For a given number of terms in the Galerkin expansion, the computational 
time required to advance solutions sequentially through a series of Rayleigh 
numbers is essentially independent of the magnitudes of the Rayleigh numbers. 
In contrast to finite difference methods, wall gradients are no less accurate than 
the internal field results themselves. 

3. On a comparative basis, the Galerkin method is computationally more 
efficient than AD1 methods, provided errors in such derived quantities as wall 
shear or heat flux in excess of 2-3 %, are acceptable. However, this advantage is 
offset by a laborious prepreparation of the algebraic problem and larger storage 
requirements and, all things considered, it is not clear which method is superior. 
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